4.3 Article Proceedings Paper

Why hemodialysis patients are in a prooxidant state? What could be done to correct the pro/antioxidant imbalance

期刊

BLOOD PURIFICATION
卷 18, 期 3, 页码 191-199

出版社

KARGER
DOI: 10.1159/000014418

关键词

oxidative stress; atherosclerosis; hemodialysis; antioxidant

向作者/读者索取更多资源

Oxidative stress which results from an imbalance between reactive oxygen species production and antioxidant defense mechanisms is now well recognized in hemodialysis (HD) patients and could be involved in dialysis-related pathologies such as accelerated atherosclerosis, amyloidosis and anemia. In order to evaluate the rationale for preventive intervention against oxidative damage during HD, we review the factors that are implied and may be responsible for the imbalance between pro- and antioxidative mechanisms. The inflammatory state mainly due to hemobioincompatibility of the dialysis system plays a critical role in the production of free oxygen radical species contributing by this way to worsen the prooxidant status of uremic patients. Two factors largely contribute to the stimulation of the NADPH oxidase: hemoreactivity of the mem bra ne and trace amounts of endotoxins. The antioxidant system is severely impaired in uremic patients and gradually altered with the degree of renal failure. HD could further impair this antioxidant system mainly by losses of (a) hydrophilic unbound small-molecular-weight substances such as vitamin C, (b) trace elements and (c) enzyme-regulatory compounds. Two main axes may be proposed in order to prevent and/or to decrease oxidative stress in HD patients. One consists in improving the hemocompatibility of the dialysis system mainly by using a dialyzer with low hemoreactivity and ultrapure, sterile, nonpyrogenic dialysate. The other consists in supplementing the deficiency patients with antioxidants. This could be achieved by oral or perdialytic supplementation. Vitamin E could be bound on dialyzer membrane. Alternatively, hemolipodialysis consists in loading HD patients with vitamin C or E via an ancillary circuit made of vitamin E-rich liposomes. The presence of liposomes could also facilitate the removal of hydrophobic prooxidative substances. Copyright (C) 2000 S. Karger AG. Basel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据