4.2 Review

Calcium signalling during RVD of kidney cells

期刊

CELLULAR PHYSIOLOGY AND BIOCHEMISTRY
卷 10, 期 5-6, 页码 297-302

出版社

KARGER
DOI: 10.1159/000016375

关键词

cell volume regulation; kidney; inner medullary collecting duct cells; calcium; calcium stores; arachidonic acid

向作者/读者索取更多资源

The balance of a high extracellular osmolarity in the kidney medulla is mainly based on an accumulation of organic osmolytes in the cells. The regulation of cell volume during hypotonic conditions results in a release of organic osmolytes - a process that is partly calcium-dependent, Using calcium-sensitive fluorescent dye and confocal laser scanning microscopy, we have investigated calcium signalling during regulatory volume decrease (RVD) in kidney cells. In rat inner medullary collecting duct (IMCD) cells in primary culture, hypotonic stress induced a calcium release from intracellular stores that preceded calcium entry from the extracellular milieu. Hyposmotic stress had no effect on the cellular IP3 content. Preincubation with 100 mu mol/l ETYA (a non-metabolizible derivative of arachidonic acid), however, reduced the calcium response to hypotonic stress as well as the RVD. Blocker of voltage-dependent calcium channels (verapamil, diltiazem, and nifedipine) in the concentration of 40 mu mol/l reduced partly the calcium response. SKF-96365, an inhibitor of receptor-mediated calcium channels, also attenuated the calcium influx. In conclusion, swelling of IMCD cells increases intracellular calcium by release from intracellular stores and entry across the cell membranes. The signalling involves arachidonic acid metabolism. Copyright (C) 2000 S. Karger AG, Basel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据