4.3 Article

Kinematics of rock flow in a crustal-scale shear zone: implication for the orogenic evolution of the southwestern Hellenides

期刊

GEOLOGICAL MAGAZINE
卷 137, 期 1, 页码 81-96

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1017/S0016756800003496

关键词

-

向作者/读者索取更多资源

Combined shear-sense criteria, finite-strain data and vorticity analyses were used to study the deformation path in a curved crustal-scale shear zone (Phyllite-Quartzite Series) of the southwestern Hellenides. The results are combined with data on the structural evolution of a cover nappe (Pindos thrust belt) to provide new insights into the orogenic evolution of this region. Ductile deformation within the Phyllite-Quartzite Series was associated with a top-to-the-west-southwest shearing and was partitioned into two structural domains: a root zone and a frontal domain. The root zone is characterized by vertical coaxial stretching, high strain and upward movement of the material, while the frontal domain comprises simple-shear deformation at the base and pure shear at the top. This pattern suggests superposition of pure shear on simple-shear deformation, and implies tectonic extrusion of the material from the root zone. The initiation of brittle deformation in the Pindos thrust belt was associated with westward translation above the sub-horizontal Pindos Thrust. Later, as the mountain range elevated, normal faulting at high altitudes and migration of thrusting to the west occurred, while east-directed folding and thrusting in the belt started to the east. According to the proposed model, crustal thickening was taking place throughout the Oligocene and early Miocene, including the subduction of the Apulian beneath the Pelagonian microcontinent and the intracontinental subduction of the Phyllite-Quartzite Series. During the lower Miocene, vertical buoyancy forces led to the successive steepening of the shear zone and the simultaneous duplexing of its basement, facilitating tectonic extrusion of the material from its root zone. Finally, an indentation process caused vertical expulsion of the orogenic wedge and gravity collapse in the brittle crust.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据