4.5 Article

Tunable pH-sensitive liposomes composed of mixtures of cationic and anionic lipids

期刊

BIOPHYSICAL JOURNAL
卷 79, 期 3, 页码 1438-1446

出版社

CELL PRESS
DOI: 10.1016/S0006-3495(00)76395-8

关键词

-

向作者/读者索取更多资源

The pH-dependent fusion properties of large unilamellar vesicles (LUVs) composed of binary mixtures of anionic and cationic lipids have been investigated. It is shown that stable LUVs can be prepared from the ionizable anionic lipid cholesteryl hemisuccinate (CHEMS) and the permanently charged cationic lipid N,N-dioleoyl-N,N-dimethylammonium chloride (DODAC) at neutral pH values and that these LUVs undergo fusion as the pH is reduced. The critical pH at which fusion was observed (pH(f)) was dependent on the cationic lipid-to-anionic lipid ratio. LUVs prepared from DODAC/CHEMS mixtures at molar ratios of 0 to 0.85 resulted in Vesicles with pH(f) values that ranged from pH 4.0 to 6.7, respectively. This behavior is consistent with a model in which fusion occurs at pH values such that the DODAC/CHEMS LUV surface charge is zero. Related behavior was observed for LUVs composed of the ionizable cationic lipid 3 alpha-[N-(N',N'-dimethylaminoethane)-carbamoyl] cholesterol hydrochloride (DC-Chol) and the acidic lipid dioleoylphosphatidic acid (DOPA). Freeze-fracture and P-31 NMR evidence is presented which indicates that pH-dependent fusion results from a preference of mixtures of cationic and anionic lipid far inverted nonbilayer lipid phases under conditions where the surface charge is zero. It is concluded that tunable pH-sensitive LUVs composed of cationic and anionic lipids may be of utility for drug delivery applications. It is also suggested that the ability of cationic lipids to adopt inverted nonbilayer structures in combination with anionic lipids may be related to the ability of cationic lipids to facilitate the intracellular delivery of macromolecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据