4.6 Article

Constitutional and thermal point defects in B2 NiAl

期刊

PHYSICAL REVIEW B
卷 61, 期 9, 页码 6003-6018

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevB.61.6003

关键词

-

向作者/读者索取更多资源

The formation energies of point defects and the interaction energies of various defect pairs in NiAl are calculated from first principles within an order N, locally self-consistent Green's-function method in conjunction with multipole electrostatic corrections to the atomic sphere approximation. The theory correctly reproduces the ground state for the off-stoichiometric NiAl alloys. The constitutional defects (antisite Ni atoms and Ni vacancies in Ni-rich and Al-rich NiAl, respectively) are shown to form ordered structures in the ground state, in which they tend to avoid each other at the shortest distance on their sublattice. The dominant thermal defects in Ni-rich and stoichiometric NiAl are calculated to be triple defects. In Al-rich alloys another type of thermal defect dominates, where two Ni vacancies are replaced by one antisite Al atom. As a result, the vacancy concentration decreases with temperature in this region. The effective defect formation enthalpies for different concentration regions of NiAl are also obtained.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据