4.7 Article

Accelerating star formation in clusters and associations

期刊

ASTROPHYSICAL JOURNAL
卷 540, 期 1, 页码 255-270

出版社

IOP PUBLISHING LTD
DOI: 10.1086/309312

关键词

open clusters and associations : individual (Chamaeleon; IC 348; Lupus; NGC 2264; Orion Nebula Cluster; rho Ophiuchi; Taurus-Auriga; Upper Scorpius); stars : evolution; stars : formation; stars : pre-main-sequence

向作者/读者索取更多资源

We use our own, recently developed pre-main-sequence evolutionary tracks to investigate the star formation histories of relatively nearby associations and clusters. We first employ published luminosities and effective temperatures to place the known members of each region in the H-R diagram. We then construct age histograms detailing that region's history. The groups studied include Taurus-Auriga, Lupus, Chamaeleon, rho Ophiuchi, Upper Scorpius, IC 348, and NGC 2264. This study is the first to analyze a large number of star-forming regions with the same set of theoretical tracks. Our investigation corroborates and extends our previous results on the Orion Nebula Cluster. In all cases, we find that star formation began at a relatively low level some 10(7) yr in the past and has more recently undergone a steep acceleration. This acceleration, which lasts several million years, is usually continuing through the present epoch. The one clear exception is the OB association Upper Scorpius, where the formation rate climbed upward, peaked, and has now died off. Significantly, this is also the only region of our list that has been largely stripped of molecular gas. The acceleration represents a true physical phenomenon that cannot be explained away by incompleteness of the samples; nor is the pattern of stellar births significantly affected by observational errors or the presence of unresolved binaries. We speculate that increasing star formation activity arises from contraction of the parent cloud. Despite the short timescale for acceleration, the cloud is likely to evolve quasi-statically. Star formation itself appears to be a critical phenomenon, occurring only in locations exceeding some threshold density. The cloud's contraction must reverse itself, and the remnant gas dissipate, in less than 107 yr, even for aggregates containing no massive stars. In this case, molecular outflows from the stars themselves presumably accomplish the task, but the actual dispersal mechanism is still unclear.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据