4.8 Article

Equilibria, kinetics, and mechanism in the bicarbonate activation of hydrogen peroxide: Oxidation of sulfides by peroxymonocarbonate

期刊

JOURNAL OF THE AMERICAN CHEMICAL SOCIETY
卷 122, 期 8, 页码 1729-1739

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ja9927467

关键词

-

向作者/读者索取更多资源

Bicarbonate ion is an effective activator for hydrogen peroxide in the oxidation of sulfides. Kinetic and spectroscopic results support the formation of peroxymonocarbonate ion (HCO4-) as the oxidant in the catalytic reactions. The reaction of hydrogen peroxide and bicarbonate to form HCO4- occurs rapidly at 25 degrees C (t(1/2) approximate to 300 s) near neutral pH in aqueous solution and alcohol/water mixtures, and an equilibrium analysis of the reaction by C-13 NMR leads to an estimate of the electrode potential for the HCO4-/HCO3- couple (1.8 V vs NHE). Solubility of the bicarbonate catalyst is enhanced by the use of NH4HCO3 rather than by the use of group 1 salts, which tend to have lower solubility in the mixed solvents and can lead to phase separation. Rate laws and mechanistic analyses are presented for the oxidation of ethylphenylsulfide and related sulfides. The second-order rate constants for sulfide oxidations by HCO4- are similar to 300-fold greater than those for H2O2, and this increase is consistent with expectations based on a Bronsted analysis of the kinetics for other heterolytic peroxide oxidations. At high concentrations of H2O2, a pathway that is second order in H2O2 is significant, and this path is interpreted as a general acid catalysis by H2O2 of carbonate displacement accompanying substrate attack at the electrophilic oxygen of HCO4-. Increasing water content up to 80% in the solvent increases the rate of oxidation. The BAP (bicarbonate-activated peroxide) oxidation system is a simple, inexpensive, and relatively nontoxic alternative to other oxidants and peroxyacids, and it can be used in a variety of oxidations where a mild, neutral pH oxidant is required. Variation of bicarbonate source and the cosolvent can allow optimization of substrate solubility and oxidation rates for applications such as organic synthesis and chemical warfare agent decontamination.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据