4.6 Article

Excimer laser-induced temperature field in melting and resolidification of silicon thin films

期刊

JOURNAL OF APPLIED PHYSICS
卷 87, 期 1, 页码 36-43

出版社

AMER INST PHYSICS
DOI: 10.1063/1.371823

关键词

-

向作者/读者索取更多资源

The liquid/solid interface motion and temperature history during excimer laser annealing of 50-nm-thick Si films on fused quartz substrates are investigated by in situ nanosecond time-resolved electrical conductance, optical reflectance, and transmittance at visible and near-IR wavelengths, combined with thermal emission measurements. The temperature response, melt propagation and evolution of the recrystallization process are fundamentally different in the partial-melting and the complete-melting regimes. Because it is necessary to balance the latent heat across the propagating phase-change interface, the maximum induced temperature in the partial-melting regime remains close to the melting point of amorphous Si. The peak temperature rises in the complete-melting regime, but the nonparticipating nature of the liquid Si/fused quartz interface allows substantial supercooling (> 200 K), followed by spontaneous nucleation into fine-grained material. These phase transformations are consistent with the recrystallized polycrystalline Si morphologies that indicate grain enhancement in the near-complete-melting regime. It is also found that melting of polycrystalline Si occurs close to the melting point of crystalline Si. This temperature is by approximately 140 K higher than the melting point of amorphous Si. (C) 2000 American Institute of Physics. [S0021-8979(00)08401-2].

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据