4.6 Article

Excitatory synaptic transmission mediated by NMDA receptors is more sensitive to isoflurane than are non-NMDA receptor-mediated responses

期刊

ANESTHESIOLOGY
卷 92, 期 1, 页码 228-236

出版社

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/00000542-200001000-00035

关键词

anesthesia; CA1; glutamate; inhalational; kainate; rat hippocampal

资金

  1. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM054767] Funding Source: NIH RePORTER
  2. NIGMS NIH HHS [GM54767] Funding Source: Medline

向作者/读者索取更多资源

Background: Effects of volatile anesthetic agents on N-methyl-D-aspartate (NMDA) receptor-mediated excitatory synaptic transmission have not been well characterized. The authors compared effects produced by halothane and isoflurane on electrophysiologic properties of NMDA and non-NMDA receptor-mediated synaptic responses in slices from the rat hippocampus, Methods: Field excitatory postsynaptic potentials (fEPSPs) in. the CA1 area were recorded with extracellular electrodes after electrical stimulation of Schaffer-collateral-commissural fiber inputs. NMDA or non-NMDA receptor-mediated fEPSPs were pharmacologically isolated using selective antagonists. Clinically relevant concentrations of halothane or isoflurane were applied to slices in an artificial cerebrospinal fluid perfusate. Paired pulse facilitation was used as a measure of presynaptic effects of the anesthetic agents. Results: Clinically relevant concentrations of halothane (1.2 vol% approximate to 0.35 mM) depressed fEPSP amplitudes mediated by NMDA receptors and non-NMDA receptors to a similar degree (mean +/- SD: 63.3 +/- 14.0% of control, n = 5; 60.2 +/- 7.3% of control, n = 7, respectively). in contrast, isoflurane (1.4 vol% approximate to 0.50 mM) preferentially depressed fEPSP amplitudes mediated by NMDA receptors (44.0 +/- 7.4% of control, n = 6, P < 0.001) compared with those for non-NMDA receptors (68.7 +/- 5.4% of control, n = 6), indicating a selective, additional postsynaptic effect. Paired pulse facilitation of fEPSPs was increased significantly by both anesthetic agents from 1.37 +/- 0.13 to 1.91 +/- 0.25 (n = 5, P < 0.05 for halothane) and from 1.44 +/- 0.04 to 1.64 +/- 0.08 (n = 5,P < 0.01 for Isoflurane), suggesting that presynaptic mechanisms are also involved in fEPSP depression produced by the anesthetic agents. Neither rise times nor decay times of fEPSPs were changed in the presence of the anesthetic agents. Conclusions: These results indicate that fEPSPs mediated by postsynaptic NMDA receptors are more sensitive to clinically relevant concentrations of isoflurane than are non-NMDA receptor-mediated responses, but this selective effect was not observed for halothane, Both agents also appeared to depress release of glutamate from nerve terminals via presynaptic actions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据