4.4 Article

Light-dependent regulation of cyanobacterial phytochrome expression

期刊

JOURNAL OF BACTERIOLOGY
卷 182, 期 1, 页码 38-44

出版社

AMER SOC MICROBIOLOGY
DOI: 10.1128/JB.182.1.38-44.2000

关键词

-

向作者/读者索取更多资源

A histidine kinase protein (Cph1) with sequence homology and spectral characteristics very similar to those of the plant phytochrome has been recently identified in the cyanobacterium Synechocystis sp, strain PCC 6803, Cph1 together with Rcp1 (a protein homologue to the response regulator CheY) forms a light-regulated two-component system whose function is presently unknown. Levels of cph1 rcp1 mRNA increase in the dark and decrease upon reillumination, A dark-mediated increase in cph1 rcp1 mRNA levels was inhibited by the presence of glucose, but not by inhibition of the photosynthetic electron how, The half-life of cph1 rcp1 transcript in the light was about fourfold shorter than in the dark, indicating that control of cph1 rcp1 transcript stability is one of the mechanisms by which light regulates expression of the cyanobacterial phytochrome. After 15 min of darkness, 3-min pulses of red, blue, green, and far-red light were equally efficient in decreasing the cph1 rcp1 mRNA levels. Red light downregulation was not reversed by far-red light, suggesting that cph1 rcp1 mRNA levels are not controlled by a phytochrome-like photoreceptor. Furthermore, a Synechocystis strain containing an H538R Cph1 point mutation, unable to phosphorylate Rcp1, shows normal light-dark regulation of the cph1 rcp1 transcript levels. Our data suggest a role of cyanobacterial phytochrome in the control of processes required for adaptation in light-dark and dark-light transitions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据