4.5 Article

Plasmodium falciparum-infected red blood cells depend on a functional glutathione de novo synthesis attributable to an enhanced loss of glutathione

期刊

BIOCHEMICAL JOURNAL
卷 346, 期 -, 页码 545-552

出版社

PORTLAND PRESS LTD
DOI: 10.1042/0264-6021:3460545

关键词

buthionine-(S,R)-sulphoximine; chemotherapy; gamma-glutamylcysteine synthetase; malaria

向作者/读者索取更多资源

During the erythrocytic cycle, Plasmodium falciparum is highly dependent on an adequate thiol status for its survival. Glutathione reductase as well as de novo synthesis of GSH are responsible for the maintenance of the intracellular GSH level. The first and rate-limiting step of the synthetic pathway is catalysed by gamma-glutamylcysteine synthetase (gamma-GCS). Using L-buthionine-(S,R)-sulphoximine (BSO), a specific inhibitor of the gamma-GCS, we show that the infection with P. falciparum causes drastic changes in the GSH metabolism of red blood cells (RBCs). Infected RBCs lose GSH at a rate 40-fold higher than non-infected RBCs. The de novo synthesis of the tripeptide was found to be essential for parasite survival. GSH depletion by BSO inhibits the development of P. falciparum with an IC50 of 73 mu M. The effect of the drug is abolished by supplementation with GSH or GSH monoethyl ester. Our studies demonstrate that the plasmodicidal effect of the inhibitor BSO does not depend on its specificity towards its target enzyme in the parasite, but on the changed physiological needs for the metabolite GSH in the P. falciparum-infected RBCs. Therefore the depletion of GSH is proposed as a chemotherapeutic strategy for malaria, and gamma-GCS is proposed as a potential drug target.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据