4.6 Article

Phosphorylation of phospholamban and troponin I in beta-adrenergic-induced acceleration of cardiac relaxation

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.2000.278.3.H769

关键词

protein kinase A; relaxation; isoproterenol; calcium concentration

资金

  1. NATIONAL HEART, LUNG, AND BLOOD INSTITUTE [R37HL030077, R01HL026057, R37HL026057, R01HL030077] Funding Source: NIH RePORTER
  2. NHLBI NIH HHS [HL-26057, HL-22318, HL-30077] Funding Source: Medline

向作者/读者索取更多资源

Activation of cAMP-dependent protein kinase A (PKA) in ventricular myocytes by isoproterenol (Iso) causes phosphorylation of both phospholamban (PLB) and troponin I (TnI) and accelerates relaxation by up to twofold. Because PLB phosphorylation increases sarcoplasmic reticulum (SR) Ca pumping and TnI phosphorylation increases the rate of Ca dissociation from the myofilaments, both factors could contribute to the acceleration of relaxation seen with PKA activation. To compare quantitatively the role of TnI versus PLB phosphorylation, we measured relaxation rates before and after maximal Iso treatment for twitches of matched amplitudes in ventricular myocytes and muscle from wild-type (WT) mice and from mice in which the PLB gene was knocked out (PLB-KO). Because Iso increases contractions, even in the PLB-KO mouse, extracellular [Ca] or sarcomere length was adjusted to obtain matching twitch amplitudes (in the presence and absence of Iso). In PLB-KO myocytes and muscles (which were allowed to shorten), Iso did not alter the time constant (tau) of relaxation (similar to 29 ms). However, with increasing isometric force development in the PLB-KO muscles, Iso progressively but modestly accelerated relaxation (by 17%). These results contrast with WT myocytes and muscles where Iso greatly reduced tau of cell relaxation and intracellular Ca concentration decline (by 30-50%), independent of mechanical load. The Iso treatment used produced comparable increases in phosphorylation of TnI and PLB in WT. We conclude that the effect of beta-adrenergic activation on relaxation is mediated entirely by PLB phosphorylation in the absence of external load. However, TnI phosphorylation could contribute up to 14-18% of this lusitropic effect in the WT mouse during maximal isometric contractions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据