4.4 Article

Mesenchyme with fgf-10 expression is responsible for regenerative capacity in Xenopus limb buds

期刊

DEVELOPMENTAL BIOLOGY
卷 219, 期 1, 页码 18-29

出版社

ACADEMIC PRESS INC
DOI: 10.1006/dbio.1999.9587

关键词

-

向作者/读者索取更多资源

A young tadpole of an anuran amphibian can completely regenerate an amputated limb, and it exhibits an ontogenetic decline in the ability to regenerate its limbs. However, whether mesenchymal or epidermal tissue is responsible for this decrease of the capacity remains unclear. Moreover, little is known about the molecular interactions between these two tissues during regeneration. The results of this study showed that fgf-10 expression in the limb mesenchymal cells clearly corresponds to the regenerative capacity and that fgf-10 and fgf-8 are synergistically reexpressed in regenerating blastemas. However, neither fgf-10 nor fgf-8 is reexpressed after amputation of a nonregenerative limb. Nevertheless, nonregenerative epidermal tissue can reexpress fgf-8 under the influence of regenerative mesenchyme, as was demonstrated by experiments using a recombinant limb composed of regenerative limb mesenchyme and nonregenerative limb epidermis. Taken together, our data demonstrate that the regenerative capacity depends on mesenchymal tissue and suggest that fgf-10 is likely to be involved in this capacity. (C) 2000 Academic Press.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据