4.6 Article

Water/hydrocarbon phase equilibria using the thermodynamic perturbation theory

期刊

INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH
卷 39, 期 3, 页码 797-804

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ie990559b

关键词

-

向作者/读者索取更多资源

Two equations of state, the cubic plus association (CPA) and the statistical associating fluid theory (SAFT), which account explicitly for the effect of hydrogen bonding on the thermodynamic properties of associating fluids using the perturbation theory of Wertheim (J. Stat. Phys. 1986, 42, 459, 477), are applied to predict the phase equilibrium of pure water, n-alkanes, and 1-alkenes as well as the low- and high-pressure phase equilibrium of water/hydrocarbon mixtures. The pure compound parameters for the two equations are estimated by fitting experimental vapor pressure and saturated liquid density data that cover a very wide temperature range from approximately the triple point to very dose to-the critical point. One temperature-independent binary interaction parameter is calculated for each of the mixtures examined. The analysis of the results shows that the increased complexity of SAFT over CPA does not offer any improvement in modeling highly nonideal fluid behavior, at least for the systems examined here.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据