4.5 Article

Kelvin-Helmholtz instability at the magnetotail boundary: MHD simulation and comparison with Geotail observations

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
卷 105, 期 A9, 页码 21175-21190

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/1999JA000312

关键词

-

向作者/读者索取更多资源

On March 24, 1995, the Geotail spacecraft observed large fluctuations of the magnetic field and plasma propel-ties in the low-latitude boundary layer about 15 R-E tailward of the dusk meridian. Although the magnetospheric and magnetosheath magnetic fields were strongly northward, the B-Z component showed strong short-duration fluctuations in which B-z could even reach negative values. We have used two-dimensional magnetohydrodynamic simulations with magnetospheric and magnetosheath input parameters specifically chosen for this Geotail event to identify the processes which cause the observed boundary properties. It is shown that these fluctuations can be explained by the Kelvin-Helmholtz instability if the k vector of the instability has a component along the magnetic field direction. The simulation results show many of the characteristic properties of the Geotail observations. In particular, the quasi-periodic strong fluctuations are well explained by satellite crossings through the Kelvin-Helmholtz vortices. It is illustrated how the interior structure of the Kelvin-Helmholtz vortices leads to the rapid fluctuations in the Geotail observations. Our results suggest an average Kelvin-Helmholtz wavelength of about 5 R-E, with a vortex size of close to 2 R-E for an average repetition time of 2.5 min. The growth time for these waves implies a source region of about 10-16 R-E upstream from the location of the Geotail spacecraft (i.e., near the dusk meridian). The results also indicate a considerable mass transport of magnetosheath material into the magnetosphere by magnetic reconnection in the Kelvin-Helmholtz vortices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据