4.5 Article

Gonadal steroids regulate the number and activational state of mast cells in the medial habenula

期刊

ENDOCRINOLOGY
卷 141, 期 3, 页码 1178-1186

出版社

ENDOCRINE SOC
DOI: 10.1210/en.141.3.1178

关键词

-

资金

  1. PHS HHS [54088, 29380] Funding Source: Medline

向作者/读者索取更多资源

While mast cells in connective tissues have long been associated with allergic reactions, it is now clear that they are also present within the central nervous system under normal physiological conditions. The mast cell population increases 10-fold in the medial habenular region of the brain within 2 h after pairing in doves. The first study explored whether this increase was due to exposure to gonadal steroids. Light microscopic immunocytochemistry indicates an increased number of brain MC following exposure to either testosterone (T) or dihydrotestosterone (DHT) in the male, or 17 beta estradiol (E) in the female, but not in cholesterol-treated controls. Thus, the increased habenular MC population is produced by gonadal hormones in the absence of sexual behavior, is not sexually dimorphic, and does not require aromatization of androgen. In the next study, MC activational state was determined using electron microscopy. Cells were categorized into five states: (I) resting; (II) initiation of degranulation; (III) fully degranulated; (TV) piecemeal secretion; and (V) resynthesizing. Hormone treatment (T, DHT, or E) resulted in a significant increase in the percent of cells in activated states. MC granules contain a wide range of biologically active molecules. The release of these granule contents into the neuropil of the central nervous system is likely to have wide ranging effects at multiple levels including vascular permeability and neuronal excitability. In that steroid treatment is known to result in such effects, the present demonstration of a hormonally induced shift in MC secretory state is one avenue by which these effects are mediated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据