4.3 Article

Organic electroluminescent devices: enhanced carrier injection using SAM derivatized ITO electrodes

期刊

JOURNAL OF MATERIALS CHEMISTRY
卷 10, 期 1, 页码 169-173

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/a903708j

关键词

-

向作者/读者索取更多资源

Taking as a device model ITO\TPD\Alq(3)\Al (where TPD is N,N'-bis(3-methylphenyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine and Alq(3) is tris(quinolin-8-olato)aluminium) it is shown that control and improvement of carrier injection may be achieved using self-assembled monolayers (SAMs) to manipulate the Schottky energy barrier at the ITO-TPD interface. By using polar adsorbate molecules with the dipole oriented outward from the surface an artificial dipolar layer is formed and the work function is increased, and vice versa. With this method the threshold voltage for light emission (turn-on) can be reduced by 4 V and the maximum luminance increased by a factor of 3.5, giving an overall performance superior to that using the more stable Ag/Mg counter electrode. The SAMs effect is confirmed using a Scanning Kelvin Probe (SKP) to profile the relative work function of half-coated ITO samples. Increases in work function in excess of 0.3 eV are observed, in line with predictions using the calculated molecular dipoles of the SAM molecules.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据