4.2 Article

Bioturbation and irrigation in natural sediments, described by animal-community parameters

期刊

MARINE ECOLOGY PROGRESS SERIES
卷 197, 期 -, 页码 169-179

出版社

INTER-RESEARCH
DOI: 10.3354/meps197169

关键词

bioturbation; irrigation; benthos; sediment; infauna; models; tracers

向作者/读者索取更多资源

The key objective of this study was to compare tracer-based methods that measure bioturbation and irrigation rates with predictive models based on benthic community parameters such as animal size and abundance. The individual parameters of each model were investigated separately to assess their relative influence on model output. An important aspect of this study was its focus on benthic processses in natural marine sediments, where the well-defined model assumptions are not necessarily accomodated. Faunal parameters were incorporated into a biodiffusion model proposed to describe bioturbation, and direct comparisons were made to tracer-based depth distributions of an inert particle tracer, Cr-51. The results showed that this biodiffusion model under-estimated bioturbation rates (D-b) compared to Cr-51 tracer measurements. It was shown that the model predictions were highly sensitive to estimates of faunal weight and sediment reworking depth. The model suggests that large, deposit-feeding animals dominate biogenous mixing and that mixing rates are more influenced by animal size than density. In the box-cosm system, the large urchins Echinocardium cordatum did in fact dominate sediment-mixing processes. Irrigation was modelled by a combination of the non-local transport model and the radial-diffusion model, using animal size and density, and was compared to down-core distributions of a dissolved, conservative tracer bromide (Br-). Modelled irrigation rates increased as a function of burrow radius and animal density, with the strongest dependency on animal density. Given the simplicity of the assumptions for the idealized radial-diffusion model, agreement between measured and predicted rates was relatively good in 50% of the box-cosms. Over-estimation in the remainder may be attributable to unrealistic assumptions that all individuals inhabit vertical burrows and irrigate them continuously.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据