4.7 Article

Numerical differentiation for local and global tangent operators in computational plasticity

期刊

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/S0045-7825(99)00296-0

关键词

finite element method; consistent tangent operators; numerical differentiation; difference schemes; quadratic convergence

向作者/读者索取更多资源

In this paper, numerical differentiation is applied to integrate plastic constitutive laws and to compute the corresponding consistent tangent operators. The derivatives of the constitutive equations are approximated by means of difference schemes. These derivatives are needed to achieve quadratic convergence in the integration at Gauss-point level and in the solution of the boundary value problem. Numerical differentiation is shown to be a simple, robust and competitive alternative to analytical derivatives. Quadratic convergence is maintained, provided that adequate schemes and stepsizes are chosen. This point is illustrated by means of some numerical examples. (C) 2000 Elsevier Science S.A. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据