4.8 Article

Agrobacterium transient expression system as a tool for the isolation of disease resistance genes: application to the Rx2 locus in potato

期刊

PLANT JOURNAL
卷 21, 期 1, 页码 73-81

出版社

WILEY
DOI: 10.1046/j.1365-313x.2000.00654.x

关键词

-

向作者/读者索取更多资源

Rx2 confers resistance against potato virus X (PVX). To clone Rx2, we developed a system based on Agrobacterium-mediated transient expression of candidate R genes in transgenic tobacco leaves expressing the PVX coat protein elicitor of Rx2-mediated resistance. Using this system, a potato gene eliciting HR specifically in the presence of the elicitor was identified. Based on genetical and functional analysis, it is concluded that the cloned gene is Rx2. The transient expression system is potentially adaptable to cloning of any other resistance gene. The Rx2 locus is on chromosome V of potato and the encoded protein is highly similar to the products of Rx1 and Rxh1 encoded on potato chromosome XII. Rxh1 has been shown elsewhere to encode a potato cyst nematode resistance gene Gpa2. All three proteins are in the leucine zipper-nucleotide binding site-leucine rich repeat class of resistance gene products. Rx1 and Rx2 are functionally identical and are almost identical in the C terminal region consistent with a role of the leucine rich repeats in recognition of the PVX coat protein. In the N terminal, half there are some regions where the Rx1 and Rx2 proteins are more similar to each other than to the Rxh1 protein. However, in other regions these proteins are more similar to Rxh1 than to each other. Based on this mosaic pattern of sequence similarity, we conclude that sequence exchange occurs repeatedly between genetically unlinked disease resistance genes through a process of gene conversion.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据