3.8 Article

DNA methylation and chromosome instability in lymphoblastoid cell lines

期刊

CYTOGENETICS AND CELL GENETICS
卷 90, 期 1-2, 页码 93-101

出版社

KARGER
DOI: 10.1159/000015641

关键词

-

向作者/读者索取更多资源

In order to gain more insight into the relationships between DNA methylation and genome stability, chromosomal and molecular evolutions of four Epstein-Barr virus-transformed human lymphoblastoid cell lines were followed in culture for more than 2 yr. The four cell lines underwent early, strong overall demethylation of the genome. The classical satellite-rich, heterochromatic juxtacentromeric regions of chromosomes 1, 9, and 16 and the distal part of the long arm of the Y chromosome displayed specific behavior with time in culture. In two cell lines, they underwent a strong demethylation, involving successively chromosomes Y, 9, 16, and 1, whereas in the two other cell lines, they remained heavily methylated. For classical satellite 2-rich heterochromatic regions of chromosomes 1 and 16, a direct relationship could be established between their demethylation, their undercondensation at metaphase, and their involvement in non-clonal rearrangements. Unstable sites distributed along the whole chromosomes were found only when the heterochromatic regions of chromosomes 1 and 16 were unstable. The classical satellite 3-rich heterochromatic region of chromosomes 9 and Y, despite their strong demethylation, remained condensed and stable. Genome demethylation and chromosome instability could not be related to variations in mRNA amounts of the DNA methyltransferases DNMT1, DNMT3A, and DNMT3B and DNA demethylase. These data suggest that the influence of DNA demethylation on chromosome stability is modulated by a sequence-specific chromatin structure. Copyright (C) 2000 S. Karger AG, Basel.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据