4.7 Article

Functional analysis of a RPD3 histone deacetylase homologue in Arabidopsis thaliana

期刊

PLANT MOLECULAR BIOLOGY
卷 44, 期 2, 页码 167-176

出版社

KLUWER ACADEMIC PUBL
DOI: 10.1023/A:1006498413543

关键词

Arabidopsis; gene repression; histone deacetylase; RPD3

向作者/读者索取更多资源

Histone acetylation is modulated through the action of histone acetyltransferase and deacetylase, which play key roles in the regulation of eukaryotic gene expression. We have screened the expressed sequence tag database with the yeast histone deacetylase RPD3 sequence and identified two Arabidopsis homologues, AtRPD3A and AtRPD3B. The deduced amino acid sequences of AtRPD3A and AtRPD3B show high overall homology (55% identity) to each other. AtRPD3A encodes a putative protein of 502 amino acids with 49% identity to the yeast RPD3. AtRPD3B encodes a putative protein of 471 amino acids and shares 55% amino acid identity with the yeast RPD3. Northern analysis indicated that AtRPD3A was highly expressed in the leaves, stems, flowers and young siliques of Arabidopsis plants, whereas the AtRPD3B transcript was not detected in these organs. An AtRPD3A fusion protein repressed transcription when directed to a promoter driving a reporter gene, indicating a role for AtRPD3A protein in gene repression. Arabidopsis plants were transformed with a gene construct comprising a truncated AtRPD3A cDNA in the antisense orientation driven by a strong constitutive promoter, -394tCUP. Antisense expression of AtRPD3A resulted in decreased endogenous AtRPD3A transcript and delayed flowering in transgenic Arabidopsis plants, suggesting that the transition from the vegetative to reproductive phase of development could be affected by histone acetylation. Our study demonstrates the important role of histone deacetylases in plant growth and development.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据