4.3 Article

Independence and cooperativity in rearrangements of a potassium channel voltage sensor revealed by single subunit fluorescence

期刊

JOURNAL OF GENERAL PHYSIOLOGY
卷 115, 期 3, 页码 257-268

出版社

ROCKEFELLER UNIV PRESS
DOI: 10.1085/jgp.115.3.257

关键词

potassium channel; cooperativity; fluorescence; voltage-sensing; gating

资金

  1. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS035549] Funding Source: NIH RePORTER
  2. NINDS NIH HHS [R01 NS035549, NS35549-03] Funding Source: Medline

向作者/读者索取更多资源

Voltage-gated potassium channels are composed of four subunits. Voltage-dependent activation of these channels consists of a depolarization-triggered series of charge-carrying steps that occur in each subunit. These major charge-carrying steps are followed by cooperative step(s) that lead to channel opening. Unlike the late cooperative steps, the major charge-carrying steps have been proposed to occur independently in each of the channel subunits. In this paper, we examine this further. We showed earlier that the two major charge-carrying steps are associated with two sequential outward transmembrane movements of the charged S4 segment. We now use voltage clamp fluorometry to monitor these S4 movements in individual subunits of heterotetrameric channels. In this way, we estimate the influence of one subunit's S4 movement on another's when the energetics of their transmembrane movements differ. Our results show that the first S4 movement occurs independently in each subunit, while the second occurs cooperatively. At least part of the cooperativity appears to be intrinsic to the second S4 charge-carrying rearrangement. Such cooperativity in gating of voltage-dependent channels has great physiological relevance since it can affect both action potential threshold and rate of propagation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据