4.6 Article

Mycorrhiza formation and elevated CO2 both increase the capacity for sucrose synthesis in source leaves of spruce and aspen

期刊

NEW PHYTOLOGIST
卷 145, 期 3, 页码 565-574

出版社

CAMBRIDGE UNIV PRESS
DOI: 10.1046/j.1469-8137.2000.00598.x

关键词

ectomycorrhiza; elevated CO2; sucrose synthesis; carbohydrate metabolism; sink-source relations

向作者/读者索取更多资源

The effects of mycorrhiza formation in combination with elevated CO2 concentrations on carbon metabolism of Norway spruce (Picea abies) seedlings and aspen (Populus tremula x Populus tremuloides) plantlets were analysed. Plants were inoculated for 6 wk with the ectomycorrhizal fungi Amanita muscaria and Paxillus involutus (aspen only) in an axenic Petri-dish culture at 350 and 700 mu l l(-1) CO2 partial pressure. After mycorrhiza formation, a stimulation of net assimilation rate was accompanied by decreased activities of sucrose synthase, an increased activation state of sucrose-phosphate synthase, decreased fructose-2,6-bisphosphate and starch, and slightly elevated glucose-6-phosphate contents in source leaves of both host species, independent of CO2 concentration. Exposure to elevated CO2 generally resulted in higher net assimilation rates, increased starch as well as decreased fructose-2,6-bisphosphate (aspen only) content in source leaves of both mycorrhizal and nonmycorrhizal plants. Our data indicate only slightly improved carbon utilization by mycorrhizal plants at elevated CO2. They demonstrate however, that both factors which modulate the sink-source properties of plants increase the capacity for sucrose synthesis in source leaves mainly by allosteric enzyme regulation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据