3.8 Article

Two new tailoring enzymes, a glycosyltransferase and an oxygenase, involved in biosynthesis of the angucycline antibiotic urdamycin A in Streptomyces fradiae Tu2717

期刊

MICROBIOLOGY-UK
卷 146, 期 -, 页码 147-154

出版社

SOC GENERAL MICROBIOLOGY
DOI: 10.1099/00221287-146-1-147

关键词

glycosyltransferase; oxygenase; angucycline; urdamycin A; Streptomyces

向作者/读者索取更多资源

Urdamycin A, the principal product of Streptomyces fradiae Tu2717, is an angucycline-type antibiotic and anticancer agent containing C-glycosidically linked D-olivose. To extend knowledge of the biosynthesis of urdamycin A the authors have cloned further parts of the urdamycin biosynthetic gene cluster. Three new ORFs (urdK, urdJ and urdO) were identified on a 3.35 kb fragment, and seven new ORFs (urdL, urdM, urdJ2, urdZ1, urdGT2, urdG and urdH) on an 8.05 kb fragment. The deduced products of these genes show similarities to transporters (urdJ and urdJ2), regulatory genes (urdK), reductases (urdO),cyclases (urdL) and deoxysugar biosynthetic genes (urdG, urdH ana urdO). The product of urdM shows striking sequence similarity to oxygenases (N-terminal sequence) as well as reductases (C-terminal sequence), and the deduced amino acid sequence of urdGT2 resembles those of glycosyltransferases. To the function of urdM and urdGT2, targeted gene inactivation experiments were performed. The resulting urdM deletion mutant strains accumulated predominantly rabelomycin, indicating that UrdM is involved in oxygenation at position 12b of urdamycin A. A mutant in which urdGT2 had been deleted produced urdamycin I, urdamycin J and urdamycin K instead of urdamycin A. Urdamycins I, J and K are tetracyclic angucyclinones lacking a C-C connected deoxysugar moiety. Therefore UrdGT2 must catalyse the earliest glycosyltransfer step in the urdamycin biosynthetic pathway, the C-glycosyltransfer of one NDP-D-olivose.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据