4.8 Article

Geodesic active contours and level sets for the detection and tracking of moving objects

出版社

IEEE COMPUTER SOC
DOI: 10.1109/34.841758

关键词

front propagation; geodesic active contours; level set theory; motion detection; tracking

向作者/读者索取更多资源

This paper presents a new variational framework for detecting and tracking multiple moving objects in image sequences. Motion detection is performed using a statistical framework for which the observed interframe difference density function is approximated using a mixture model. This model is composed of two components, namely, the static (background) and the mobile (moving objects) one. Both components are zero-mean and obey Laplacian or Gaussian law. This statistical framework is used to provide the motion detection boundaries. Additionally, the original frame is used to provide the moving object boundaries. Then, the detection and the tracking problem are addressed in a common framework that employs a geodesic active contour objective function. This function is minimized using a gradient descent method, where a flow deforms the initial curve towards the minimum of the objective function, under the influence of internal and external image dependent forces. Using the level set formulation scheme, complex curves can be detected and tracked white topological changes for the evolving curves are naturally managed. To reduce the computational cost required by a direct implementation of the level set formulation scheme, a new approach named Hermes is proposed. Hermes exploits aspects from the well-known front propagation algorithms (Narrow Band. Fast Marching) and compares favorably to them. Very promising experimental results are provided using real video sequences.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据