4.7 Article

Estimating error in an analysis of forest fragmentation change using North American Landscape Characterization (NALC) data

期刊

REMOTE SENSING OF ENVIRONMENT
卷 71, 期 1, 页码 106-117

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/S0034-4257(99)00070-X

关键词

-

向作者/读者索取更多资源

We describe an approach for estimating measurement error in an analysis of forest fragmentation dynamics. We classified North American Landscape Characterization (NALC) images in four path-row: locations in the Upper Midwest to characterize changing patterns of forest cover. To estimate error, we calculated the differences in values of forest fragmentation metrics for overlapping scene pairs from the same time frame (or epoch). The overlapping image areas were subdivided into landscape partitions. We tested the effects of amount of forest co:er, landscape phenology, atmospheric variability (e.g., haze and clouds), and alternative processing approaches on the consistency of metric values calculated for the same place and approximate time but from different images. Two of the metrics tested (average patch size and number of patches) were more sensitive to image characteristics and contained more measurement error in a change detection analysis than the others (percent forest cover and edge density). Increasing the landscape partition size moderately reduced the amount of an-or in landscape change analysis, but at the cost of reduced spatial resolution. Processes used to generalize the forest map, such as small-polygon sieving and majority filtering, were not found to consistently decrease measurement error in metric values and in some cases increased error. Predictive models of error in a forest fragmentation change analysis were developed and significantly explained up to 50% of the variation in error. We demonstrate how, in a change analysis, predicted error can be used to identify locations that exhibit change substantially greater than the error in value estimation. (C) Elsevier Science Inc., 2000.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据