3.8 Article

Mass anomalies and the structure of the Earth

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S1464-1895(00)00056-9

关键词

-

向作者/读者索取更多资源

Details of the Earth's geoid and gravity fields are summarized and examined. A set of 9274 centerpoints of 5 degrees cubes (referred to as bloblets) represents subducted slab locations. This set, developed from reconstructed plate history, was provided by the first author of Lithgow-Berttelloni et, al. [1998] and is the best available estimate of locations of subduction material in the Earth's mantle. Two global mass solutions offered here utilize 1) only those bloblets in the outer 800 km, and 2) only those bloblets in the outer 1400 km. Since each bloblet location represents the center of a 5-degree cube [a larger volume than appropriate for a fragment of subducted lithosphere] it was necessary in the 800 Irm depth limit model to reduce their density to 0.004 grams/cc, and by increasing bloblet density six times at 797.5 km depth to simulate the piling up of slab material beneath the 670 km boundary. The 1400 km depth limit model [commensurate with evidence of slab penetration into the lower mantle from seismic tomography] required estimating densities for the bloblets at nine different mantle depths. An additional four point-masses at 3000 km depth (to simulate CMB topography, unrelated to dynamic topography) completes the mass models. Both these models show reasonable agreement to patterns and magnitudes for degrees 2-10, 3-10, 4-10, 2-3, 3, and 2 geoid fields with both geometric and hydrostatic flattening. These models support an assessment that topography at the core mantle boundary (CMB) may be produced by processes within the core rather than from within the mantle. Possible causes for the CMB topography are discussed (C) 2000 Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据