4.7 Article

Characterization and correction of interpolation effects in the realignment of fMRI time series

期刊

NEUROIMAGE
卷 11, 期 1, 页码 49-57

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1006/nimg.1999.0515

关键词

fMRI; interpolation; motion artifacts

向作者/读者索取更多资源

Subject motion in functional magnetic resonance imaging (fMRI) studies can be accurately estimated using realignment algorithms. However, residual changes in signal intensity arising from motion have been identified in the data even after realignment of the image time series. The nature of these artifacts is characterized using simulated displacements of an fMRI image and is attributed to interpolation errors introduced by the resampling inherent within realignment. A correction scheme that uses a periodic function of the estimated displacements to remove interpolation errors from the image time series on a voxel-by-voxel basis is proposed. The artifacts are investigated using a brain phantom to avoid physiological confounds Small- and large-scale systematic displacements show that the artifacts have the same form as revealed by the simulated displacements. A randomly displaced phantom and a human subject are used to demonstrate that interpolation errors are minimized using the correction. (C) 2000 Academic Press.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据