4.3 Article Proceedings Paper

Colloidal nanocrystals for telecommunications. Complete coverage of the low-loss fiber windows by mercury telluride quantum dots

期刊

PURE AND APPLIED CHEMISTRY
卷 72, 期 1-2, 页码 295-307

出版社

WALTER DE GRUYTER GMBH
DOI: 10.1351/pac200072010295

关键词

-

向作者/读者索取更多资源

Optical fibers have revolutionized the telecommunications industry to such an extent that the network capacity available today was unthinkable 20 years ago. Even so, with the advent of the datawave, and the exponential increase of network traffic predicted to continue indefinitely, the generation of bandwidth remains a challenge. One of the major limitations to the implementation of future high-capacity, ultra-broadband optical networks is the expansion of the fiber bandwidth beyond that available from the current state-of-the-art signal amplification device-the erbium-doped fiber amplifier (EDFA). Although there is currently a large effort to expand the flat-gain bandwidth of the EDFA, most of these efforts involve sophisticated engineering, exotic glass fibers, or multicomponent cascaded systems. In a radically different approach, we are attempting to use the unique properties of semiconductor nanocrystals, or quantum dots, as designer atoms in order to produce an ultra-broadband optical amplifier with complete coverage of the telecommunications wavelengths. In this paper we review the synthesis of thiol-stabilized mercury chalcogenide nanocrystals via an aqueous colloidal route, which demonstrate extremely intense photoluminescence all the way across the spectral region of interest, i.e., from 1000 to over 1700 nm.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据