4.2 Article Proceedings Paper

A combined crossed molecular beam and ab initio investigation of C-2 and C-3 elementary reactions with unsaturated hydrocarbons - pathways to hydrogen deficient hydrocarbon radicals in combustion flames

期刊

FARADAY DISCUSSIONS
卷 119, 期 -, 页码 51-66

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b101967h

关键词

-

向作者/读者索取更多资源

Crossed molecular beam experiments on dicarbon and tricarbon reactions with unsaturated hydrocarbons acetylene, methylacetylene, and ethylene were performed to investigate the dynamics of channels leading to hydrogen-deficient hydrocarbon radicals. In the light of the results of new ab initio calculations, the experimental data suggest that these reactions are governed by an initial addition of C-2/C-3 to the pi molecular orbitals forming highly unsaturated cyclic structures. These intermediates are connected via various transition states and are suggested to ring open to chain isomers which decompose predominantly by displacement of atomic hydrogen, forming C4H, C5H, HCCCCCH2, HCCCCCCH3, H2CCCCH and H2CCCCCH. The C-2((1)Sigma (+)(g)) + C2H4 reaction has no entrance barrier and the channel leading to the H2CCCCH product is strongly exothermic. This is in strong contrast with the C-3((1)Sigma (+)(g)) + C2H4 reaction as this is characterized by a 26.4 kJ mol(-1) threshold to form a HCCCCCH2 isomer. Analogous to the behavior with ethylene, preliminary results on the reactions of C-2 and C-3 with C2H2 and CH3CCH showed the H-displacement channels of these systems to share many similarities such as the absence/presence of an entrance barrier and the reaction mechanism. The explicit identification of the C-2/C-3 vs. hydrogen displacement demonstrates that hydrogen-deficient hydrocarbon radicals can be formed easily in environments like those of combustion processes. Our work is a first step towards a systematic database of the intermediates and the reaction products which are involved in this important class of reactions. These findings should be included in future models of PAH and soot formation in combustion flames.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据