4.3 Article Proceedings Paper

Local heat transfer and flow structure on and above a dimpled surface in a channel

期刊

出版社

ASME
DOI: 10.1115/1.1333694

关键词

-

向作者/读者索取更多资源

Experimental results, measured on and above a dimpled test surface placed on one wall of a channel, are given for Reynolds numbers from 1250 to 61,500 and ratios of air air inlet stagnation temperature to surface temperature ranging from 0.68 to 0.94. These include flow visualizations, surveys of time-averaged total pressure and streamwise velocity, and spatially resolved local Nusselt numbers, which are measured using infrared thermography, used in conjunction with energy balances, thermocouples, and in situ calibration procedures. The ratio of channel height to dimple print diameter is 0.5. Flow visualizations show vortical fluid and vortex pairs shed from the dimples, including a large upwash region and packets of fluid emanating from the central regions of each dimple, as well as vortex pairs and vortical fluid that form near dimple diagonals. These vortex structures augment local Nusselt numbers near the downstream rims of each dimple, both slightly within each depression, and especially on the flat surface just downstream of each each dimple. Such augmentations are spread over larger surface areas and become more pronounced as the ratio of inlet stagnation temperature to local surface temperature decreases. As a result, local and spatially averaged heat transfer augmentations become larger as this temperature ratio decreases. This is due to the actions of vortical fluid in advecting cool fluid from the central parts of the channel to regions close to the hotter dimpled surface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据