4.4 Article

A physically based method for correcting temperature data measured by naturally ventilated sensors over snow

期刊

JOURNAL OF GLACIOLOGY
卷 47, 期 159, 页码 665-670

出版社

INT GLACIOL SOC
DOI: 10.3189/172756501781831774

关键词

-

向作者/读者索取更多资源

During the snowmelt period in 1998, air-temperature data were acquired at 1 min intervals using different measurement systems as part of a field campaign in the Karkevagge, Swedish Lapland. A comparison reveals that temperatures from naturally ventilated sensors exceed temperatures from aspirated sensors by as much as 6.2 K. Errors in temperature are closely connected to high values of upwelling shortwave radiation and are larger in periods of low wind speed. Measurement errors result from the instantaneous radiation conditions and propagate over the next measurements due to slow response time of the naturally ventilated sensor. A physically based method is developed for correcting temperature data influenced by radiation errors, which requires additional measurements of wind speed and upwelling shortwave radiation. Coefficients of the correction formula are automatically determined from the erroneous temperature data, so the method is independent of accurate air-temperature measurements. The high quality of the correction method could be validated by accurate psychrometer measurements. One of the most important applications is the computation of sensible-heat fluxes from snow-covered surfaces during the snowmelt period using the bulk-aerodynamic method, which is greatly improved by the new correction method.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据