4.4 Article

Generation and evaluation of dimension-reduced amino acid parameter representations by artificial neural networks

期刊

JOURNAL OF MOLECULAR MODELING
卷 7, 期 9, 页码 360-369

出版社

SPRINGER-VERLAG
DOI: 10.1007/s008940100038

关键词

amino acid parameters; neural networks; quantitative structure-property relation; secondary structure prediction

向作者/读者索取更多资源

In order to process data of proteins, a numerical representation for an amino acid is often necessary. Many suitable parameters can be derived from experiments or statistical analysis of databases. To ensure a fast and efficient use of these sources of information, a reduction and extraction of relevant information out of these parameters is a basic need. In this approach established methods like principal component analysis (PCA) are supplemented by a method based on symmetric neural networks. Two different parameter representations of amino acids are reduced from five and seven dimensions, respectively, to one, two, three, or four dimensions by using a symmetric neural network approach alternatively with one or three hidden layers. It is possible to create general reduced parameter representations for amino acids. To demonstrate the ability of this approach, these reduced sets of parameters are applied for the ab initio prediction of protein secondary structure from primary structure only. Artificial neural networks are implemented and trained with a diverse representation of 430 proteins out of the PDB. An essentially faster training and also prediction without a decrease in accuracy is obtained for the reduced parameter representations in comparison with the complete set of parameters. The method is transferable to other amino acids or even other molecular building blocks, like nucleic acids, and therefore represents a general approach.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据