4.5 Article

Host plant effects on activity of the mitosporic fungi Beauveria bassiana and Paecilomyces fumosoroseus against two populations of Bemisia whiteflies (Homoptera : Aleyrodidae)

期刊

MYCOPATHOLOGIA
卷 151, 期 1, 页码 11-20

出版社

SPRINGER
DOI: 10.1023/A:1010835224472

关键词

allelochemicals; antibiosis; cuticle; entomopathogenic fungi; gossypol; third trophic level; tri-trophic interactions

类别

向作者/读者索取更多资源

Laboratory bioassays were conducted to determine the effect of host plant on mycosis in two geographically distinct populations of early 2nd-instar nymphs of Bemisia argentifolii Bellows & Perring from the entomopathogenic fungi Beauveria bassiana (Balsamo) Vuillemin and Paecilomyces fumosoroseus (Wize) Brown & Smith. Mycosis in B. argentifolii nymphs varied according to the host plant on which the nymphs were reared but not according to the population. Both populations of whiteflies reared on cotton were consistently significantly less susceptible to infection by either fungus than when reared on melon. We hypothesized that the cotton plant produced a fungal inhibitor that may confer protection on whiteflies feeding (and possibly sequestering) upon it. Germination of conidia of both fungi was strongly inhibited (below 12% germination) on the cuticle of nymphs reared on cotton but was over 95% on the cuticle of nymphs reared on melon. We further hypothesized that the terpenoid gossypol, produced by many cultivars of cotton, might have been involved in antibiosis. Gossypol mixed with Noble agar at five concentrations was tested for its effects on germination of conidia of both fungi. P. fumosoroseus was highly tolerant of gossypol, even at the relatively high concentration of 1000 ppm, while B. bassiana tolerated gossypol at concentrations up to 500 ppm and strong inhibition only occurred in presence of gossypol at 1000 ppm. Our in vivo findings on cotton and on the insect's cuticle pointed at a potential host plant-mediated antibiosis. The in vitro tolerance of P. fumosoroseus and partial tolerance of B. bassiana to gossypol disagreed with our in vivo data. Gossypol concentrations higher than 1000 ppm might have increased the sensitivity of the fungi in our in vitro tests. Sequestered gossypol (and/or other cotton plant allelochemicals) by B. argentifolii nymphs would explain, at least partially, the insect's defense against the pathogens.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据