4.6 Review

Porous Organic Polymers for CO2 Storage and Conversion Reactions

期刊

CHEMCATCHEM
卷 11, 期 1, 页码 244-257

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cctc.201801046

关键词

Adsorbents; porous organic polymers; CO2 capture; CO2 fixation; fuels and fine chemicals

资金

  1. CSIR, New Delhi

向作者/读者索取更多资源

To overcome the challenges of global warming and environmental pollution it is mandatory to reduce the concentration of atmospheric carbon dioxide (CO2), which is largely accumulated in air through the combustion of fossil fuels. Thus, sequestration of CO2 through physisorption on solid adsorbents and their successful conversion into value added fine chemicals are the major priority areas of research today. Innovation of efficient solid CO2-philic adsorbents together with their high mechanical/chemical stability and regeneration efficiency are the most challenging objectives to achieve this goal. In this context, porous organic polymers (POPs) owing to their high specific surface area, chemical stability, nanoscale porosity and structural diversity have huge potential to play as selective CO2 adsorbent. POPs synthesized through large varieties of reactive monomers via simple and convenient chemical routes can be the ideal adsorbents for the CO2 storage and fixation reactions. A wide range of POPs can be synthesized from different multidentate amines, aldehydes, carboxylic acids or triazine monomers through the polycondensation reactions or solid state condensation reactions. Ease of synthesis, uniform pore width together with high surface area and surface basic sites (nitrogen and other heteroelements) play crucial role in the CO2 absorption and conversion reactions. This review provides a concise account in designing POPs and their application in CO2 adsorption and fixation into reactive organic molecules for the synthesis of fuels and value added fine chemicals.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据