4.6 Article

Tailoring the Cooperative Acid-Base Effects in Silica-Supported Amine Catalysts: Applications in the Continuous Gas-Phase Self-Condensation of n-Butanal

期刊

CHEMCATCHEM
卷 6, 期 5, 页码 1283-1290

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cctc.201301087

关键词

acidity; aldol reaction; amines; organocatalysis; silica

资金

  1. BP

向作者/读者索取更多资源

A highly efficient solid-base organocatalyst for the gas-phase aldol self-condensation of n-butanal to 2-ethylhexenal was developed by grafting site-isolated amines on tailored silica surfaces. The catalytic activity depends largely on the nature of amine species, the surface concentration of amine and silanol groups, and the spatial separation between the silanol and amine groups. Insitu FTIR measurements demonstrated that the formation of nucleophilic enamines leads to the enhanced catalytic activity of secondary amine catalysts, whereas the formation of imines (stable up to 473K) leads to the low activity observed for silica-supported primary amines. Blocking the silanol groups on the silica support by silylation or cofeeding water into the reaction stream drastically decreased the reaction rates, demonstrating that weaker acidic silanol groups participate cooperatively with the amine groups to catalyze the condensation reaction. This work demonstrates that the spatial separation of the weakly acidic silanols and amines can be tuned by the controlled dehydration of the supporting silica and by varying the linker length of the amine organosilane precursor used to graft the amine to the support surface. A mechanism for aldol condensation was proposed and then analyzed by DFT calculations. DFT analysis of the reaction pathway suggested that the rate-limiting step in aldol condensation is carboncarbon bond formation, which is consistent with the observed kinetics. The calculated apparent activation barrier agrees reasonably with that measured experimentally.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据