4.6 Article

Fe3O4-SiO2-P4VP pH-Sensitive Microgel for Immobilization of Nickel Nanoparticles: An Efficient Heterogeneous Catalyst for Nitrile Reduction in Water

期刊

CHEMCATCHEM
卷 6, 期 2, 页码 538-546

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cctc.201300984

关键词

nanoparticles; nickel; microgels; nitriles

资金

  1. Shahid Beheshti University Research Council

向作者/读者索取更多资源

Fe3O4 magnetic nanoparticles (MNPs) were modified with (3-aminopropyl)triethoxysilane through silanization. An atom transfer radical polymerization-initiating site immobilized onto amine-functionalized Fe3O4 MNPs. The surface-initiated atom transfer radical polymerization of 4-vinylpyridine was then performed in the presence of Fe3O4-SiO2-Br nanoparticles, which led to the formation of Fe3O4-SiO2-P4VP [P4VP=poly(4-vinylpyridine)] hybrid microgels cross-linked with Fe3O4 MNPs. Our approach uses polymer microgels as templates for the synthesis of nickel nanoparticles (NiNPs). The tunable properties of synthesized NiNPs@Fe3O4-SiO2-P4VP pH-sensitive microgels were used in the catalytic reduction of aliphatic and aromatic nitriles. Moreover, the catalytic activity of metal nanocomposites that can be modulated by the volume transition of microgel structures with changing pH has been evaluated. TEM, X-ray photoelectron spectroscopy, thermogravimetric analysis, atomic absorption spectroscopy, XRD, UV/Vis spectroscopy, and FTIR spectroscopy were used to characterize the resultant catalyst.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据