4.7 Article

Geometry of river networks. III. Characterization of component connectivity

期刊

PHYSICAL REVIEW E
卷 63, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.63.016117

关键词

-

向作者/读者索取更多资源

Essential to understanding the overall structure of river networks is a knowledge of their detailed architecture. Here we explore the presence of randomness in river network structure and the details of its consequences. We first show that an averaged view of network architecture is provided by a proposed self-similarity statement about the scaling of drainage density, a local measure of stream concentration. This scaling of drainage density is shown to imply Tokunaga's law, a description of the scaling of side branch abundance along a given stream, as well as a scaling law for stream lengths. We then consider fluctuations in drainage density and consequently the numbers of side branches. Data are analyzed for the Mississippi River basin and a model of random directed networks. Numbers of side streams are found to follow exponential distributions, as are intertributary distances along streams. Finally, we derive a joint variation of side stream abundance with stream length, affording a full description of fluctuations in network structure. Fluctuations in side stream numbers are shown to be a direct result of fluctuations in stream lengths. This is the last paper in a series of three on the geometry of river networks.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据