4.4 Article

Mechanistic Insights into the Cytochrome P450-Mediated Oxidation and Rearrangement of Littorine in Tropane Alkaloid Biosynthesis

期刊

CHEMBIOCHEM
卷 10, 期 14, 页码 2382-2393

出版社

WILEY-V C H VERLAG GMBH
DOI: 10.1002/cbic.200900318

关键词

alkaloids; cytochromes; enzyme catalysis; fluorine; isomerization

资金

  1. Royal Thailand Government

向作者/读者索取更多资源

During the biosynthesis of certain tropane alkaloids, littorine (1) is rearranged to hyoscyamine (3). Recent evidence indicates that this isomerisation is a two-step process in which the first step is an oxidation/rearrangement to give hyoscyamine aldehyde (2). This step is catalysed by CYP80F1, a cytochrome P450 enzyme, which was recently identified from the plant Hyoscyamus niger; CYP80F1 also catalyses the hydroxylation of littorine at the 3'-position. The mechanisms of the reactions catalysed by CYP80F1 were probed with synthetic deutero and arylfluoro analogues of 1. Measurement of the primary kinetic isotope effects indicates that C3' hydrogen abstraction is the rate-limiting step for the oxidation/rearrangement of natural littorine, and for the 3'-hydroxylation reaction of the unnatural S enantiomer of littorine. The character of the intermediates in the oxidation/rearrangement and hydroxylation reaction was probed with the use of arylfluorinated analogues of (R)-littorine (natural stereoisomer) and (S)-littorine (unnatural stereoisomer) as substrates for CYP80F1. The relative conversions of ortho-, meta- and para-fluorolittorine analogues were used to obtain information on the likely intermediacy of either a benzylic radical or benzylic carbocation intermediate. The data suggest that hydroxylation takes place via a benzylic carbocation intermediate, whereas the product profile arising from rearrangement is more consistent with a benzylic radical intermediate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据