4.6 Article

Increased inactivation of nitric oxide is involved in coronary endothelial dysfunction in heart failure

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajpheart.2001.280.1.H68

关键词

endothelium-derived factors; free radicals

向作者/读者索取更多资源

Recent evidence suggests the possibility that enhanced inactivation of endothelium-derived nitric oxide (NO) by oxygen free radical (OFR) may cause endothelial dysfunction in heart failure (HF). To test this hypothesis, we examined the effect of antioxidant therapy on endothelium-dependent vasodilation of the coronary circulation in a canine model of tachycardia-induced HF. Endothelium-dependent vasodilation was less than that in controls, and OFR formation in coronary arterial and myocardial tissues was greater in HF dogs than those in controls. The immunohistochemical staining of 4-hydroxy-2-nonenal, OFR-induced lipid peroxides was detected in coronary microvessels of HF dogs. Intracoronary infusion of the cell-permeable OFR scavenger Tiron inhibited OFR formation and improved endothelium-dependent vasodilation in HF dogs but not in controls. The NO synthesis inhibitor N-G-monomethyl-L-arginine (L-NMMA) diminished the beneficial effect of Tiron in HF dogs. Endothelium-independent vasodilation was similar between control and HF dogs, and no change in its response was noted by Tiron or Tiron plus L-NMMA in either group. In summary, antioxidant treatment with Tiron improved coronary vascular endothelium-dependent vasodilation by increasing NO activity in tachycardia-induced HF. Thus coronary endothelial dysfunction in HF may be, at least in part, due to increased inactivation of NO by OFR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据