4.8 Article

Magnetic nanocomposite particles and hollow spheres constructed by a sequential layering approach

期刊

CHEMISTRY OF MATERIALS
卷 13, 期 1, 页码 109-116

出版社

AMER CHEMICAL SOC
DOI: 10.1021/cm001164h

关键词

-

向作者/读者索取更多资源

The fabrication of magnetic composite core-shell particles and hollow spheres with tailored dimensions and compositions has been accomplished by a multistep (layer-by-layer) strategy. Composite particles were prepared by coating submicrometer-sized anionic polystyrene (PS) latices with magnetite (Fe3O4) nanoparticle layers alternately adsorbed with polyelectrolyte from aqueous solution. The thickness of the deposited multilayers could be finely tuned with nanoscale precision, either by selection of the number of adsorption cycles performed or by the number of polyelectrolyte layers deposited between each nanoparticle layer (i.e., interlayer). As demonstrated by transmission electron microscopy, a marked improvement in the growth, uniformity, and regularity of the composite multilayers was achieved when the number of polyelectrolyte interlayers was increased from one [(poly(diallyldimethylammonium chloride) (PDADMAC)] to three [(PDADMAC/poly(styrenesulfonate) (PSS)/PDADMAC)]. Hollow, intact magnetic spheres were obtained by calcination of the core-shell particles at elevated temperature. Furthermore, composite hollow spheres were prepared by calcination of PS latices coated with multilayers of silica and Fe3O4 nanoparticles. These nanoengineered colloidal particles may potentially find applications as delivery systems, or in diagnostics, where the particles can be directed by application of an external magnetic field.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据