4.6 Article

A direct simulation of EPR slow-motion spectra of spin labelled phospholipids in liquid crystalline bilayers based on a molecular dynamics simulation of the lipid dynamics

期刊

PHYSICAL CHEMISTRY CHEMICAL PHYSICS
卷 3, 期 23, 页码 5311-5319

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b105618m

关键词

-

向作者/读者索取更多资源

EPR line shapes can be calculated from the stochastic Liouville equation assuming a stochastic model for the reorientation of the spin probe. Here we use instead and for the first time a detailed molecular dynamics (MD) simulation to generate the stochastic input to the Langevin form of the Liouville equation. A 0.1 mus MD simulation at T = 50 degreesC of a small lipid bilayer formed by 64 dipalmitoylphosphatidylcholine (DPPC) molecules at the water content of 23 water molecules per lipid was used. In addition, a 10 ns simulation of a 16 times larger system consisting of 32 DPPC molecules with a nitroxide spin moiety attached at the sixth position of the sn2 chain and 992 ordinary DPPC molecules, was used to investigate the extent of the perturbation caused by the spin probe. Order parameters, reorientational dynamics and the EPR FID curve were calculated for spin probe molecules and ordinary DPPC molecules. The timescale of the electron spin relaxation for a spin-moiety attached at the sixth carbon position of a DPPC lipid molecule is 11.9 x 10(7) rad s(-1) and for an unperturbed DPPC molecule it is 3.5 x 10(7) rad s(-1).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据