4.5 Article

Global simulation of the Geospace Environment Modeling substorm challenge event

期刊

JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS
卷 106, 期 A1, 页码 381-395

出版社

AMER GEOPHYSICAL UNION
DOI: 10.1029/2000JA000605

关键词

-

向作者/读者索取更多资源

We use a global model of Earth's magnetosphere and ionosphere to simulate the Geospace Environment Modeling (GEM) substorm challenge event of November 24, 1996. We compare our results to International Monitor for Auroral Geomagnetic Effects (IMAGE) ground magnetometer data, assimilative mapping of ionospheric electrodynamics (AMIE) polar cap potential and field aligned current patterns, Polar Visible Imaging System (VIS) estimates of the polar cap magnetic flux, GOES 8 geosynchronous magnetometer data, IMP 8 magnetometer data, and Geotail plasma and magnetic field data. We find generally good agreement between the simulation and the data. The modeled evolution of this substorm generally follows the phenomenological near-Earth neutral line model. However, reconnection in the tail is very localized, which makes establishing a causal relation between tail dynamics and auroral dynamics difficult, if not impossible. We also find that the model results critically depend on the parameterization of auroral Hall and Pedersen conductances and anomalous resistivity in the magnetosphere. For many combinations of parameters that enter these parameterizations, no substorm develops in the model, but instead the magnetosphere enters a steady convection mode. The main deviation of the model from the data is excessive convection, which leads to a strong, driven westward electrojet in the growth phase, only partial tail loading, and a reduced recovery phase. Possible remedies are a better model for auroral conductances, an improved anomalous resistivity model, and a more realistic treatment of the ring current.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据