4.7 Article

Dopamine induces ERK activation in renal epithelial cells through H2O2 produced by monoamine oxidase

期刊

KIDNEY INTERNATIONAL
卷 59, 期 1, 页码 76-86

出版社

BLACKWELL SCIENCE INC
DOI: 10.1046/j.1523-1755.2001.00468.x

关键词

reactive oxygen species; catecholamines; amine oxidases; mitogen-activated protein kinases; hydrogen peroxide

资金

  1. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS035875] Funding Source: NIH RePORTER
  2. NINDS NIH HHS [NS35875-01] Funding Source: Medline

向作者/读者索取更多资源

Background. The rat renal proximal tubule cells contain a large amount of monoamine oxidase, which catalyzes the oxidative deamination of catecholamines such as dopamine (DA). The aim of this study is to investigate the potential role of hydrogen peroxide (H2O2) produced by monoamine oxidase (MAO) isoform on regulation of cell signaling and function. Methods. Primary rat proximal tubular cells, which contain almost exclusively MAO-A, and human embryonic kidney 293 (HEK 293) cells stably transfected with human MAO-B cDNA were treated with DA or tyramine in the presence or the absence of some inhibitors. Then, Shc protein tyrosine phosphorylation and extracellular-regulated kinase (ERK) activation were evaluated by immunoprecipitation/immunoblot analysis and cell proliferation by [H-3]thymidine incorporation or cell counting. Results. In rat proximal tubule cells, DA induced tyrosine phosphorylation of Shc, ERK activation, and a significant increase in DNA synthesis. The involvement of MAO-dependent H2O2 generation induced by DA (5 mu mol/L) was supported by the demonstration that the DA effects were (1) fully prevented by cell pretreatment with the MAO inhibitor pargyline, the antioxydant N-acetylcysteine (NAC), and the DA uptake inhibitor GBR 12909; (2) not abrogated by the D1 and D2 receptor antagonists; (3) observed in HEK 293 MAO-B cells but not in HEK 293 wild-type cells, which do not express MAO; and (4) similar to those induced by another MAO substrate, tyramine. Conclusions. Taken together, these results show that in addition to the effects related to receptor stimulation, DA, and probably the other catecholamines, may induce some of its effects through the MAO-dependent H2O2 production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据