4.6 Article

Integration of microfabricated needle-type glucose sensor devices with a novel thin-film Ag/AgCl electrode and plasma-polymerized thin film: mass production techniques

期刊

ANALYST
卷 126, 期 5, 页码 658-663

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/b008036p

关键词

-

向作者/读者索取更多资源

We developed an integrated array of needle-type biosensors employing a novel process of fabrication, comprising conventional semiconductor fabrication and micromachining technology. Amperometric sensing electrodes with plasma-polymerized films and a thin-film Ag/AgCl reference electrode were directly integrated on a glass substrate with thin-film process, e.g., sputtering. An enzyme was immobilized on the electrode via the plasma-polymerized film, which was deposited directly on the substrate using a dry process. The novel thin-film Ag/AgCl reference electrode showed stable potentials in concentrated chloride solutions for a long period. The plasma-polymerized film is considered to play an important role as an interfacial design between the sensing electrode and the immobilized enzyme considering that the film is extremely thin, adheres well to the substrate (electrode) and has a highly cross-linked network structure and functional groups, such as amino groups. The results showed increments of the sensor signal, probably because the plasma-polymerized film allowed a large amount of enzyme to be immobilized. The greatest advantage is that the process can permit the mass production of high-quality biosensors at a low cost.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据