4.5 Article

Expression of R-cadherin and N-cadherin by cell groups and fiber tracts in the developing mouse forebrain: Relation to the formation of functional circuits

期刊

NEUROSCIENCE
卷 106, 期 3, 页码 505-533

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/S0306-4522(01)00292-5

关键词

cell adhesion; cerebral cortex; thalamus; claustrum; limbic system; basal ganglia

向作者/读者索取更多资源

The expression of R-cadherin and N-cadherin was mapped in the postnatal forebrain of the mouse by immunohistochemistry and in situ hybridization. Results show that the two molecules are expressed in specific and restricted patterns in numerous brain nuclei, gray matter areas and cortical layers that are widely distributed throughout the mouse forebrain at postnatal day 1. The expression pattern of R-cadherin is clearly distinct from that of N-cadherin, but overlap is observed in many areas. In many cortical areas, the two cadherins have a laminar-specific distribution that varies from region to region. In addition, immunohistochemical data revealed expression of R-cadherin protein and N-cadherin protein in the neuropil of many brain regions as well as in the axons that travel in fiber tracts such as the olfactory tract, the anterior commissure, the corpus callosum, the stria terminalis and the fornix. Often, subsets of axons within the same fiber tract differentially express R-cadherin and N-cadherin, with partial overlap of expression. The targets of the cadherin-immunoreactive fiber bundles often contain neuropil as well as cell bodies of neurons that also express the same type(s) of cadherin, suggesting that R-cadherin and N-cadherin may be involved in target recognition and the establishment of connections. Specifically, the expression of R-cadherin and N-cadherin is related to the maturation of thalamocortical sensory pathways, corticofugal pathways, and pathways associated with the hippocampal complex, the piriform cortex, and the amygdala. It is also relate to the development of the cell groups associated with these pathways. Together, the results from the present study indicate the possibility that the selective adhesion of neural structures that express the same type(s) of cadherin contributes to the formation of gray matter areas, neural circuits and functional connections in the postnatal forebrain of the mouse. (C) 2001 IBRO. Published by Elsevier Science Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据