4.4 Article

Short- and long-term changes in CA1 network excitability after kainate treatment in rats

期刊

JOURNAL OF NEUROPHYSIOLOGY
卷 85, 期 1, 页码 1-9

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/jn.2001.85.1.1

关键词

-

资金

  1. NATIONAL INSTITUTE OF NEUROLOGICAL DISORDERS AND STROKE [R01NS016683] Funding Source: NIH RePORTER
  2. NINDS NIH HHS [NS-16683] Funding Source: Medline

向作者/读者索取更多资源

Neuron loss, axon sprouting, and the formation of new synaptic circuits have been hypothesized to contribute to seizures in temporal lobe epilepsy (TLE). Using the kainate-treated rat, we examined how alterations in the density of CA1 pyramidal cells and interneurons, and subsequent sprouting of CA1 pyramidal cell axons, were temporally associated with functional changes in the network properties of the CA1 area. Control rats were compared with animals during the first week after kainate treatment versus several weeks after treatment. The density of CA1 pyramidal cells and putative inhibitory neurons in stratum oriens was reduced within 8 days after kainate treatment. Axon branching of CA1 pyramidal cells was similar between controls and animals examined in the first week after kainate treatment but was increased several weeks after kainate treatment. Stimulation of afferent fibers in brain slices containing the isolated CA1 region produced graded responses in slices from controls and kainate-treated rats tested,8 days after treatment. In contrast, synchronous all-or-none bursts of spikes at low stimulus intensity (i.e., network bursts) were only observed in the CA1 several weeks after kainate treatment. In the presence of bicuculline, the duration of evoked bursts was significantly longer in CA1 pyramidal cells weeks after kainate treatment than from controls or those examined in the first week posttreatment. Spontaneous network bursts were also observed in the isolated CA1 several weeks after kainate treatment in bicuculline-treated slices. The data suggest that the early loss of neurons directly associated with kainate-induced status epilepticus is followed by increased axon sprouting and new recurrent excitatory circuits in CA1 pyramidal cells. These changes characterize the transition from the initial acute effects of the kainate-induced insult to the eventual development of all-or-none epileptiform discharges in the CA1 area.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据