4.2 Article

Hydromechanical signals in the plankton

期刊

MARINE ECOLOGY PROGRESS SERIES
卷 222, 期 -, 页码 1-24

出版社

INTER-RESEARCH
DOI: 10.3354/meps222001

关键词

zooplankton; copepod; motility; detection; hydromechanical signal; turbulence

向作者/读者索取更多资源

The distance at which plankters can detect and thus interact with each other depends on their sensitivity, size, and motion, as well as the hydrodynamic characteristics of their behaviour. Through a simple consideration of the distribution of forces exerted on the ambient fluid by different plankton behaviours, it is possible to deduce the spatial scale over-which the associated hydromechanical disturbance propagates. At low Reynolds numbers, for passive sinking or for a feeding current, the associated hydromechanical velocity, u, attenuates with distance, r, as u proportional to a Ur(-1) where a is the length scale of the organism and U is its velocity relative to the fluid. Similarly, for a self-propelled organism, u proportional to a(2) Ur(-2), In contrast, at high Reynolds numbers, a self-propelled organism generates a forward hydromechanical disturbance that has the form u proportional to a(3)Ur(-3). Within this context, observed planktonic interactions, particularly for copepods, were analysed and showed reasonably good support for the theory. The remote detection of inert particles by feeding-current-generating and free-swimming copepods was found to be feasible for known copepod sensitivities. Directional information and signal timing for flow disturbances and vortices provided a means of locating active organisms. Finally, the effect of turbulence was considered, as it can impair a copepod's detection ability. A simple analysis of ambush-feeding copepods detecting swimming ciliates under turbulent conditions showed good agreement with previously reported observations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据