4.3 Article Proceedings Paper

Magnetically-driven planetary radio emissions and application to extrasolar planets

期刊

ASTROPHYSICS AND SPACE SCIENCE
卷 277, 期 1-2, 页码 293-300

出版社

KLUWER ACADEMIC PUBL
DOI: 10.1023/A:1012221527425

关键词

-

向作者/读者索取更多资源

At least six intense nonthermal planetary radio emissions are known in our solar system: the auroral radio emissions from the Earth, Jupiter, Saturn, Uranus and Neptune, and the radio bursts from the Io-Jupiter flux tube. The former are thought to be driven by the solar wind flow pressure or energy flux on the magnetospheric cross-section, while the latter is a consequence of the Io-Jupiter electrodynamic interaction. Although in the solar wind, the flow ram pressure largely dominates the magnetic one, we suggest that the incident magnetic energy flux is the driving factor for all these six radio emissions, and that it can be estimated in the same way in all cases. Consequences for the possible radio emission from extrasolar planets are examined. 'Hot Jupiters', if they are magnetized, might possess a radio emission several orders of magnitude stronger than the Jovian one, detectable with large ground-based low-frequency arrays. On the other hand, 'giants' analogous to the Io-Jupiter interaction in the form of a pair star/hot-Jupiter are unlikely to produce intense radio emissions, unless the star is very strongly magnetized.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据